

SABIC® LLDPE 6318BJ

LINEAR LOW DENSITY POLYETHYLENE

DESCRIPTION

6318BJ resin is a hexene comonomer based Linear Low Density Polyethylene TNPP free grade designed to provide easy processability and specially formulated for optimum thermal stability at high processing temperatures used during production of Cast films. Films produced using this resin gives excellent optical properties, toughness, puncture resistance and tear strength.

TYPICAL APPLICATIONS

It is recommended for pellet wrap (pre-stretch), high performance draw down films and other general purpose applications where high strength is required.

TYPICAL PROPERTY VALUES

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
POLYMER PROPERTIES^{(1) (2)}			
Melt Flow Rate (MFR)			
at 190 °C and 2.16 kg	2.8	g/10 min	ASTM D1238
Density	918	kg/m ³	ASTM D1505
MECHANICAL PROPERTIES			
Dart Impact Strength	120	g	ASTM D1709
OPTICAL PROPERTIES^{(1) (2)}			
Haze	4	%	ASTM D1003
Gloss			
at 60°	92	-	ASTM D2457
FILM PROPERTIES^{(1) (2)}			
Tensile Properties ^{(1) (2)}			
stress at break, MD	33	MPa	ASTM D882
stress at break, TD	24	MPa	ASTM D882
strain at break, MD	600	%	ASTM D882
strain at break, TD	800	%	ASTM D882
stress at yield, MD	13	MPa	ASTM D882
stress at yield, TD	10	MPa	ASTM D882
1% secant modulus, MD	180	MPa	ASTM D882
1% secant modulus, TD	190	MPa	ASTM D882
Puncture resistance	64	J/m	SABIC method
Elmendorf Tear Strength			
MD	200	g	ASTM D1922
TD	800	g	ASTM D1922
THERMAL PROPERTIES^{(1) (2)}			
Vicat Softening Temperature	99	°C	ASTM D1525

(1) Properties have been measured by producing 30 µ film with 2.5 BUR using 100% 6318BJ.

(2) Typical values; not to be construed as specification limits.

PROCESSING CONDITIONS

Typical processing conditions for 6318BJ are:

Melt temperature: 265 - 300 °C

Chill roll temperature: 20 °C

STORAGE AND HANDLING

Polyethylene resin should be stored in a manner to prevent a direct exposure to sunlight and/or heat. The storage area should also be dry and preferably do not exceed 50°C. SABIC would not give warranty to bad storage conditions, which may lead to quality deterioration such as color change, bad smell and inadequate product performance. It is advisable to process PE resin within 6 months after delivery.